Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli.
نویسندگان
چکیده
The maltose transport system of Escherichia coli, a member of the ABC transport superfamily of proteins, consists of a periplasmic maltose binding protein and a membrane-associated translocation complex that contains two copies of the ATP-binding protein MalK. To examine the need for two nucleotide-binding domains in this transport complex, one of the two MalK subunits was inactivated by site-directed mutagenesis. Complexes with mutations in a single subunit were obtained by attaching a polyhistidine tag to the mutagenized version of MalK and by coexpressing both wild-type MalK and mutant (His)6MalK in the same cell. Hybrid complexes containing one mutant (His)6MalK subunit and one wild-type MalK subunit were separated from those containing two mutant (His)6MalK proteins based on differential affinities for a metal chelate column. Purified transport complexes were reconstituted into proteoliposome vesicles and assayed for maltose transport and ATPase activities. When a conserved lysine residue at position 42 that is involved in ATP binding was replaced with asparagine in both MalK subunits, maltose transport and ATPase activities were reduced to 1% of those of the wild type. When the mutation was present in only one of the two subunits, the complex had 6% of the wild-type activities. Replacement of a conserved histidine residue at position 192 in MalK with arginine generated similar results. It is clear from these results that two functional MalK proteins are required for transport activity and that the two nucleotide-binding domains do not function independently to catalyze transport.
منابع مشابه
Structural model of MalK, the ABC subunit of the maltose transporter of Escherichia coli: implications for mal gene regulation, inducer exclusion, and subunit assembly.
We are presenting a three-dimensional model of MalK, the ABC subunit of the maltose transporter from Escherichia coli and Salmonella typhimurium. It is based on the recently published crystal structure of the closely related Thermococcus litoralis MalK. The model was used to identify the position of mutations affecting the different functions of the ABC subunit. Six malK point mutations were is...
متن کاملVanadate-induced trapping of nucleotides by purified maltose transport complex requires ATP hydrolysis.
The maltose transport system in Escherichia coli is a member of the ATP-binding cassette superfamily of transporters that is defined by the presence of two nucleotide-binding domains or subunits and two transmembrane regions. The bacterial import systems are unique in that they require a periplasmic substrate-binding protein to stimulate the ATPase activity of the transport complex and initiate...
متن کاملFunctional exchangeability of the ABC proteins of the periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli.
The periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli transport sn-glycerol-3-phosphate and maltose, respectively. The UgpC and MalK proteins of these transport systems, which couple energy to the transport process by ATP-hydrolysis, are highly homologous, suggesting that they might be functionally exchangeable. Complementation experiments showed that UgpC ...
متن کاملSubunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits.
The cytoplasmic membrane proteins of bacterial binding protein-dependent transporters belong to the superfamily of ABC transporters. The hydrophobic proteins display a conserved, at least 20 amino acid EAA---G---------I-LP region exposed in the cytosol, the EAA region. We mutagenized the EAA regions of MalF and MalG proteins of the Escherichia coli maltose transport system. Substitutions at the...
متن کاملNovel missense mutations that affect the transport function of MalK, the ATP-binding-cassette subunit of the Salmonella enterica serovar typhimurium maltose transport system.
We report on novel mutations in the malK gene of Salmonella enterica serovar Typhimurium, encoding the ATPase subunit of the maltose transporter (MalFGK(2)). Biochemical analysis suggests that (i) L86 might be involved in a signaling step during substrate translocation and (ii) E306 may be critical for the structural integrity of the protein.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 179 17 شماره
صفحات -
تاریخ انتشار 1997